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Summary

Looking at the Nb3Sn Grain Boundary

Thin-film Nb3Sn-on-Cu ILC cavities interface

Si Map in the irradiated SiC using Machine Learning  

General application and coding

Background on materials and processing 

• This study focuses on the identification of defects in 
compounds for extreme applications: Nb3Sn used in 
superconducting radio frequency cavities and SiC for fusion 
reactors.

• Machine learning algorithms have been applied to process 
atomistic structure images of interfaces of Cu/Nb3Sn and 
defect evolution with an increase in irradiation dose in SiC.

• Advanced technology has facilitated the emergence of cutting-
edge medical technologies, such as compact superconducting 
cyclotrons for external beam therapy with protons and ions.

• Thermo Fisher Scientific Talos F200X FEG-STEM and JEOL 
ARM200CF S/TEM were used for analytical microscopy for 
chemical composition using scanning transmission electron 
microscopy-energy dispersive X-ray spectroscopy (STEM-EDS) 
[1,2]. The process culminated with taking images of SiC defects 
that were analyzed through unsupervised machine learning 
algorithms.

• The results from the analysis provide insights into defect behavior 
to create strategies for maximizing the life and strength of 
materials[1,3]. The broader impact of this work would also result in 
cost and size reduction advantages in isotope production.

• We found defects with better resolution and confidence in the 
microstructure of these materials for extreme conditions.

Why Machine Learning?
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Methods on characterization and data processing

Chemical Vapor Deposition (CVD) 
Thin-film CVD Nb3Sn-
on-Cu via pre-alloyed 

precursors  
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• SiC is a wide gap semiconductor with decent radiation tolerance leads it 
to serve in extreme environments (space exploration, fusion reactors).

• The defect evolution was experimentally investigated through 
the construction of atomistic-level microscopy characterization 
enhanced by machine learning.

• We found a detailed analysis of cavities and elemental 
distribution that is helpful to understand the effects of radiation 
of SiC and heterogeneity in Nb3Sn thin films.

STEM-EDS maps on Si inside random single grains denoised the artifacts and low-counting background signals.

The dual-coolant 
helium/lead-lithium 
(DCLL) blanket is a 
candidate for a fusion 
DEMO reactor.
DCLL uses SiC as 
the flow channel 
insert (FCI) in the 
coolant ducts to 
provide electrical and 
thermal insulation. 

Cross section of the 
Pb-Li breeder unit cell 
of DCLL blanket [7].
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• The microstructural evolution of SiC under 
these conditions needs to be examined with 
modern electron microscopy.

• Establishing a machine learning (ML) platform 
using existing Python-based data science/ML 
libraries and data visualization tools to exhibit 
the defect evolution of SiC composite fiber with 
the increase of irradiation dose. 

• An ML-enhanced approach helps better 
understand the defect behavior and proposes 
mitigation strategies to reduce their negative 
implications on structural materials.
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